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The deformation of a viscous drop, driven by buoyancy towards a solid surface or a 
deformable interface, is analysed in the asymptotic limit of small Bond number, for 
which the deformation becomes important only when the drop is close to the solid 
surface or interface. Lubrication theory is used to describe the flow in the thin gap 
between the drop and the solid surface or interface, and boundary-integral theory is 
used in the fluid phases on either side of the gap. The evolution of the drop shape is 
traced from a relatively undeformed state until a dimple is formed and a long-time 
quasi-steady-state pattwn is established. A wide range of drop to suspending phase 
viscosity ratios is examined. It is shown that a dimple is always formed, 
independently of the viscosity ratio, and that the long-time thinning rates take 
simple forms as inverse fractional powers of time. 

1. Introduction 
We consider the deformation of a viscous drop, suspended in a surrounding fluid 

with different properties, as it approaches either a flat rigid surface or a deformable 
interface. The motion is assumed to be driven by buoyancy and to be sufficiently slow 
that the creeping equations of motion are valid in all fluid phases involved. 
Furthermore, the restoring forces due to interfacial tension which resist deformation 
of the drop from the spherical shape are assumed to be sufficiently strong that the 
deformation becomes important and alters the behaviour of the system only during 
the late stages of approach when the gap between the drop and the solid surface or 
the interface is much smaller than the undeformed drop radius. However, the gap is 
considered to not have become so small that molecular forces (i.e. of the London/van 
der Waals type) become important also and cause a relatively fast rupture of the 
fluid film beneath the drops. Moreover, it is assumed that there are no surfactants on 
the interfaces which give rise to interfacial-tension gradients or repulsive forces. 

The analysis extends the work of Davis, Schonberg & Rallison (1989) who 
considered the problem of close approach of two spherical drops along their line of 
centres. Based on the assumption that the gap between the drops is much smaller 
than both radii, they justified that a lubrication-type flow is established there which 
dominates the dynamics, and that a large pressure builds up which accounts 
for the hydrodynamic force resisting the approach of the drops.The simplified 
hydrodynamics enabled them to obtain simple and accurate expressions for the 
resistance force as a function of relative velocity for various drop to continuous phase 
viscosity ratios. As they state, their analysis is valid provided that the constraint 
C u [ ~ / h , ( t ) ] ~  + 1 or Ca[a/h,(t)]i + 1, depending on the ratio of viscosities, is satis- 
fied, where Cu = p W / r  is a capillary number, u the reduced drop radius, h,(t) the 
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instantaneous minimum drop separation, ,u the drop viscosity, W the relative 
velocity and cr the interfacial tension. This ensures negligible drop deformation. 
However, h,(t) is decreasing with time and therefore a t  some point the effects of the 
deformation will become important. 

The problem of drop approach and coalescence has been considered by many 
authors (Hartland 1967,1969; Hartland & Robinson 1977; Dimitrov & Ivanof 1978; 
Lin & Slattery 1982). Effects of non-hydrodynamic forces (i.e. of intermolecular and 
electrostatic origin) have also been incorporated (Chen 1984). Thus it is well known 
that during the final stages of approach the fluid interfaces take the form of a dimple, 
underneath which fluid is trapped and draining slowly. However, in these earlier 
studies, the dimple is assumed already formed and is described in a more or less ad 
hoc manner. Furthermore, ad hoe boundary conditions are imposed a t  the edges of the 
fluid film beyond the rim of the dimple, and the flow within the drop is not taken into 
account. Here, we start with the drops being nearly undeformed and trace the 
evolution of the interfaces until the dimple is formed and the long-time behaviour 
pattern is established without restorting to ad hoc assumptions. We also show that 
the calculation of the deformation is a singular perturbation problem and requires an 
outer solution far away from the vicinity of the small gap where lubrication holds. 
Thus, although the large pressure build-up is restricted to a small region around the 
drop axis of symmetry, the deformation is of the same order of magnitude 
everywhere. The outer solution provides the proper boundary conditions to be 
imposed at the edges of the film, as well as a uniformly valid approximation for the 
deformation. 

As first shown by Frankel & Mysels (1962) and later more completely by Jones & 
Wilson (1978), at long times after the formation of the dimple the gap thinning rates 
take simple forms as inverse fractional powers of time. We extend these results by 
viewing the long-time problem as a perturbation problem, where the small parameter 
is inverse time, and performing a formal asymptotic analysis. It is shown, in contrast 
to the statements of Lin & Slattery (1982), that no assumed initial shapes or 
adjustable parameters are required for the complete description of the film thickness 
a t  long times, and moreover that the asymptotic analysis is able to predict the rate 
at which the dimple radius approaches its final value and consequently the position 
of the minimum thickness as function of time. 

Admittedly, the analysis is restricted to the parameter range of very small 
capillary numbers in the sense that a lubrication regime has to be established in the 
gap before any significant deformation occurs, although this still covers a wide range 
of practical conditions for small drops. Fully numerical calculations over a range of 
higher capillary numbers have been performed by Chi k Leal (1989), Ascoli (1988) 
using the boundary-integral method for the solution of the Stokes equations, and by 
Pozrikidis (1990) who considered also the motion of a drop away from a solid surface. 
However, these calculations suffer from convergence difficulties at small drop 
separation distances and thus are not able to reveal the long-time details of the 
deformation and the rates of thinning. Moreover, Ascoli (1988) states that variation 
of pressure across the thin gap is a necessary mechanism for the formation of a 
dimple. I n  contrast, the analysis presented here shows that dimple formation is 
possible after a lubrication regime is established in the thin gap. 

In  $2 we consider the problem of the buoyancy-driven motion of a drop towards 
a flat rigid surface. We first derive asymptotic expressions for small deformation in 
the vicinity of the small gap as well as away from it. These are used to provide 
natural initial and boundary conditions for the numerical calculations, which we 



Buoyancy-driven motion of u drop towards a surface 549 

z s  
I 

.. 

FIQURE 1. Definition sketch for a drop descending towards a flat rigid surface. 

extend until the deformation becomes significant, a dimple is formed, and a long- 
time evolution pattern is established. We also present a long-time asymptotic 
analysis which extends the results of Jones & Wilson (1978), and the numerical and 
asymptotic results are compared. Finally, the effect of varying the viscosity ratio is 
discussed. In $ 3  the motion of the drop towards a deformable interface is discussed. 
We first consider the case of a drop much more viscous than the suspending phase, 
in which case the results from $2 carry over, and then the case of viscosities of the 
same order of magnitude, where the flow in the gap is coupled with that inside the 
drop. 

2. Drop approaching a flat rigid surface 
We consider a viscous incompressible drop of undeformed radius a, viscosity hp 

and density pl ,  suspended in an unbounded fluid of viscosity p and density pz, and 
approaching a flat solid surface. The interface between the two fluids is characterized 
by constant interfacial tension, v.  For definiteness we assume that p1 > pz and that 
the wall is underneath the drop as shown in figure 1.  Note that figure 1 is a definition 
sketch and the relevant quantities are not drawn to scale. The case pz > p1 with the 
wall above the drop is equivalent. We examine first the case h $ 1 in detail, which 
implies that the drop is much more viscous than the surrounding fluid so that the 
interface is nearly tangentially immobile. More precise constraints for this to be true 
are given in $2.5. There we show that the dynamics and the evolution pattern are 
only slightly affected when the viscosity ratio is reduced. 

2.1. Governing equations ( A  $ 1) 
We adopt a cylindrical coordinate system with the origin a t  the intersection of the 
drop axis of symmetry and the flat wall. The undeformed drop is initially at a 
distance h, = ho(0) from the wall, where h, < a. Then, as shown by Davis et al. (1989), 
the appropriate lengthscales for changes inside the gap in the z- and r-directions are 
h, and ro = (aho)i, respectively. A large pressure builds up in the lubrication area of 
radius ro beneath the drop, which supports the buoyancy force. Hence, the pressure 
relative to the ambient is P * I 1  = O(Apga2/h,), where Ap is the difference in density 
between phases I and 11, and g is the gravitational acceleration. From the 
momentum equation in the r-direction, where viscous and pressure forces are in 
balance, we obtain a radial velocity component, u*I1 = O(P*"h[/r,p) = 
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O(Apgaghi/y). Then, the continuity equation indicates that the normal or axial 
velocity in the thin gap is w*I1 = O(Apgah,/p). Inside the drop, both lengthscales are 
O(ro) ,  and the balance of shear stresses a t  the interface suggests that u*I = 
O[u*I1(r,/h,)/h] = O(Apga2/h,u). From continuity this is also the scale for w*I. The 
dynamic pressure inside the drop is P*I = O(u*llAp/ro) = O(Apgai/hi). Finally, the 
appropriate timescale is O(h,/w*II) = O(,u/Apga). 

Using the above scalings for non-dimensionalization, and introducing the modified 
pressures P*I1 = P*" + p2 gz, P*I = P*' + p1 gz - 2a /a  for the continuous phase and 
the drop, respectively, the creeping equations of motion in the vicinity of the thin 
gap take the form: 

( l a )  
Phase I1 

Phase I 

l a  awl 
a2 

--(rul)+- = 0. 
r ar 

The parameter e = (ho/u)i is small compared with unity. Inertial forces are neglected 
in both phases, and this requires that the constraints p1 Apga3/h,u2 < 1 and 
p2Apga3/y2 4 1 be imposed. 

At the wall we have the no-slip and impenetrability conditions 

(3) 

UII = u'/he, WII = WI/A€2 ,  (4) 

uII = wII = 0 a t  2 = 0, 

and at the interface, z = h(r , t ) ,  we have the continuity of velocities, 

and balance of tangential and normal stresses, 
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Here, B = Apga2/cT is the Bond number. Finally the position of the interface is 
described by the kinematic boundary condition 

As can be seen from the normal stress condition ( 5 b ) ,  the deformation relative to 
the initial undeformed gap, ha, is O(Ba/h,). We define 6 = Ba/ho for this initial 
relative deformation scale, and assume that e 4 1 and 6 < 1, which of course requires 
that the Bond number itself must be much smaller than unity. The first condition 
ensures that a lubrication regime is valid in the thin gap, while the second, which is 
equivalent to the constraint Ca(a/h,)2 imposed by Davis et al. (1989), ensures that 
the drop deformation is not important initially. As shown by Davis et al. (1989), with 
h 9 I / E  the lubrication force resisting the motion of the drop is inversely proportional 
to the instantaneous gap, h,, and therefore the gap decreases exponentially (i.e. like 
e-t) under the action of a constant applied force. Thus the deformation will be small 
compared with the undeformed gap for a dimensionless time interval shorter than 
O[ln (1/6)]. From the normal stress condition, we also observe that the direct effects 
of gravity in the gap are negligible, being of O(Bh,/a). 

Given the above constraints, the governing equations (1) yield the following 
simplified system of equations which describes the evolution of the thin gap as the 
drop approaches the wall : 

= 0, (7 a)  
apII a v  
ar az2 

+- -- 

with boundary conditions 

uI1 = 0 a t  z = 0 and x = h(r,t) ,  (8) 

and - (9) 

which must be supplemented with the kinematic boundary condition (6) and an 
integral force balance around the drop. The latter takes the form (Davis et al. 1989) 

f PIIrdr = i. 

From (7) we can easily solve for UII and WII in terms of P I 1  which when substituted 
into (6) yield the well-known lubrication equation : 

- ah = 1 a 
at 12rar 

- - ( r h 3 7 ) ,  aprI  

2.2. Asymptotic solution for small deformation 

We now attempt an asymptotic solution for h and PI1 for small 6, assuming that they 
possess simple asymptotic expansions in terms of powers of 6, i.e. 

h = h,, +ah(,) + . . ., PI' = F&, + SP(l) + . . . . (12a, b)  
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At zero order in 6, equations (1 1) and (9) give 
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From (136) h(0) = c,(t) +k", (15) 

(16) 
dco and from (13a) qo, = - 3 - (co + +y. 
dt 

Substituing this expression in the integral force balance (lo), we obtain 

-3- -  dco - 2 c 
dt O '  

from which co = e-2t/g and 
ze-2t/9 h - e-Zt/9 ++2 3 

( 0 )  - 2 2 5 0 ,  = (e-2t/9 + 9 2 ) 2  ' 

Thus, at O(60) we obtain the evolution of the undeformed gap and the results (apart 
from a numerical factor due to different scalings) are in agreement with those of 
Davis et al. (1989). Proceeding to O(S) we can easily solve for h(,,, which represents 
the small deviation from the spherical shape, finding 

= cl(t)-;ln (e-2t19++P). (19) 
We observe that although the pressure, which causes the drop to deform, decays 

like rP4 away from the axis of symmetry, the same is not true for the deformation 
which instead diverges like - 3 l n r .  This result can be also verified directly by 
integrating the normal stress condition (9) and using the integral force balance (lo), 
and its physical interpretation is that there is a net external force on the drop from 
outside the thin gap due to buoyancy. This suggests that we have a singular 
perturbation problem a t  hand, and an outer solution for the deformation, which 
must be of the same order of magnitude, is needed in order to obtain a uniformly 
valid approximation. However, by using a similar approach to that for the 
calculation of cot h(,) can be completely determined by solving the inner problem 
only. Hence, the calculation of the outer solution in this case provides only a 
consistency test on the asymptotics. This is not the case when the drop is 
approaching a deformable interface where, as will be seen, we need to know the outer 
solution in order to specify completely the shape of the drop and the interface. For 
this reason we proceed to find the outer deformation, after determining cl(t) .  

We can easily solve (14a) for q1) to obtain 

dc, -2 4,) = - 3 - dt -&o c, h ~ ;  + )eo h$ In 
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At O(6)  the integral force balance (10) gives 
rCC 

J q , ) r d r = 0 .  
0 

This implies that the deformation does not change the total lubrication force exerted 
on the drop since i t  must be always equal to  the buoyancy force. Performing the 
integration in (20b)  we obtain 

9 dc, 2t 5 
+cl+-- -=O.  -- 

2 dt 27 18 

From (21) we can completely specify c1 provided that an initial condition is given. 
Such an initial condition could be rigorously obtained by solving for the deformation 
when the drop is further away from the wall, i.e. when ho(t) is comparable with the 
drop radius, a. However, it can be seen from (21 )  that c1 approaches the same form, 

5 2t 
18 27 ’  

c l ( t )  = --- 

to within exponentially small terms, independently of the initial condition. Hence, 
the thicknesss of the gap between the drop and the solid surface becomes to first 

It is interesting to note that the above expression possesses an invariance with 
respect to  the choice of the initial undeformed thickness h,, as it should. Thus at any 
instant in time, if h is scaled with the instantaneous undeformed gap h,(t), r with 
[ah,(t)$, and provided that 6, which is now redefined as Bu/h,(t), remains small 
compared with unity, we have 

h = 1++r2+&[~- ; ln(1+~r2) ] .  (24) 

We now proceed to find the deformation in the outer region away from the vicinity 
of the gap. The appropriate lengthscale is the radius of the drop, a, while the 
appropriate velocity scale for the continuous phase is the velocity of approach, 
w*II = O(Apgah,/p).  Therefore, viscous forces and the dynamic pressure are O(Apgho) 
while gravity forces are O(Apga). Consequently viscous forces are unimportant and 
the deformation in the outer region is caused by gravity forces alone. Thus, the 
deformation is O(Ba) which is the same as O(6ho), the magnitude of the deformation 
in the inner region. Of course, the relative deformation is more important in the inner 
region, since the relevant lengthscale is much smaller there. 

The cylindrical coordinate system is not convenient for describing the outer 
deformation. Instead, we use a system of spherical polar coordinates (R, 8 ,  #) with 
origin at the centre of the undeformed drop. The position of the interface is then 
described by R - f (0) = 0, where 

f(0) = l + B f , ( 0 ) + O ( B 2 )  (25 )  

and f l ( 0 )  is the deformation in the radial direction. With viscous forces neglected, the 
deformation in the outer region can be found by applying the normal stress boundary 
condition, where gravity and capillary forces are the dominant terms. However, the 
uniform pressure inside the drop will differ from the value in the undeformed state 
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by an amount of the same order of magnitude as the above forces, in order to account 
for the incompressibility of the drop. Then the normal stress condition takes the form 

where the primes denote differentiation with respect to 8. By introducing (25)  and 
changing the independent variable 8 to x = cose we obtain 

The two homogeneous solutions of (27) are 

S,(xJ = x ,  S,(x)  = F( -t 1, f, x2), 
where F denotes the hypergeometric function (see Lamb 1932, p. 113) and is 
logarithmically singular a t  x = 1.  Then, the complete solution can be found to be 

fi = [c, +g(x)]fli + (c3-$xx"-6x3) f 1 2 - p 1 >  (28) 

where g(x) = - j," (1 + x )  S2(x) dx and is finite at x = f 1. 
The three unknown constants c2, c3 ,  and P I  can be determined from the 

requirements that no singularity exists near x = 1 (the region diametrically opposite 
to the thin gap) and that the volume of the drop remains unchanged, and from 
matching with the inner solution. Here, we shall apply only the first requirement 
which is sufficient to  show whether the outer solution has the appropriate form close 
to the thin gap region. This gives c3 - ax2 -4x3 = 0 a t  x = 1, or 

c = 5  

Now, s, - - r(t) ln(1-x2) =kln(1-x2) as [+-l .  

Hence, fl - -41. (1  -x2 ) ) ,  or, in terms of the inner variable, fi - ?jlnr, which is in 
agreement with the behaviour of the inner solution for large r .  The difference in sign 
between fl and the inner solution (19) is because they refer to  different coordinate 
systems. Volume conservation and matching with the inner solution can be applied 
in a straightforward manner to give c2 and P I ,  but since no information of interest 
is obtained, this is not done here. 

(29) 3 6  

r( -9 T(1) 

2.3. Numerical results 
As already stated, the asymptotic results presented in the previous section will be 
valid for a time interval shorter than O[ln (1/8)], since the undeformed gap decreases 
exponentially. For longer times, the deformation of the drop interface due to the 
pressure required to  squeeze the fluid out from the narrowing gap is not small 
compared with the gap thickness. Therefore, in order to obtain the behaviour of the 
system beyond the small-deformation regime, we must resort to numerical solutions. 
The system of equations that needs to be solved consists of (9), (10) and ( 1 1 ) .  The 

(30) 
boundary condition h - $r2-i81nr for r B I ,  

which is provided by the asymptotic solution for the outer deformation, is 
automatically satisfied, as can be verified from (9) and (10). 

The numerical approach used is a direct extension of the asymptotic scheme and 
has been successfully employed for the problem of elastohydrodynamic collisions of 
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FIQURE 2.  The deformation of the drop near the axis of symmetry for short times, with time 

intervals of At = 2.5.  Note that the spherical part, hr2, has been subtracted. 

solid spheres by Davis, Serayssol & Hinch (1986). More specifically, given the 
thickness, h(r,  t ) ,  at a certain instant in time and an initial estimate for the time rate 
of change, (11) is used to find the pressure in the gap. The magnitude of the rate of 
change is adjusted so that the calculated pressure satisfies the integral force balance 
(10). The calculated pressure is then used in (9) to find a new iterate for h(r, t )  at the 
next time step, and the process is repeated until convergence is obtained. Spatial 
derivatives are approximated using central differences, and time derivatives by 
backward differences. The spatial domain is from r equal to zero up to a finite value, 
rmax, whch is such that the asymptotic condition (30) is satisfied to within a 
prescribed tolerance. The contribution to the integral force balance (10) from values 
of r greater than rmax is calculated analytically by noting that P r-4 for large r .  
As in Davis et al. (1986), an adjustable under-relaxation parameter is used in order to 
improve the convergence characteristics of the numerical scheme. In  the numerical 
calculations, 8 is taken to be 0.05, and the asymptotic form (23) with t = 0 is used as 
an initial condition. We note here that if a different choice for the initial gap, h,, is 
made then 8, h(r,  t )  and r have to be resealed as discussed in the derivation of (24). 
It might appear that a more straightforward approach would be to calculate the 
pressure from the normal stress condition and the rate of change of the thickness 
from the kinematic condition. However, the system of equations is numerically stiff, 
and this approach would require a prohibitively small time step for convergence. 

In figure 2 the shape of the deformation, h(r, t )  -$r2, is shown for successive time 
intervals of 2.5, up to time 25. As can be seen, the asymptotic form for large r is 
established at progressively shorter distances, and the deformation becomes 
increasingly pronounced in the region close to the drop axis of symmetry, where an 
increasing curvature opposite to that of the undeformed drop is established. 

In figure 3 the total gap thickness, h(r,  t ) ,  is shown for successive time intervals of 
22.5, up to time 119. As can be seen, the drop begins to flatten near the axis of 
symmetry while the film thinning rate is larger near the edges of the flattened region. 
This marks the initiation of the formation of the dimple and the trapping of fluid 
underneath it. Figure 4 shows the evolution of the thickness for time intervals of 180, 
up to time 1807. As time progresses the film thinning process slows down while the 
shape of the gap obtains quasi-steady-state features. A minimum occurs at a certain 
distance from the axis of symmetry which tends slowly towards a steady value of 
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FIGURE 3. The shape of the drop near the axis of symmetry for short times, with time intervals 
of At = 22.5. 
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FIGURE 4. The shape of the drop near the axis of symmetry for long times, with time intervals 
of At = 180. 
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FIGURE 5. The pressure distribution inside the gap for three characteristic times: -, t = 25, 
when the drop is slightly deformed ; ---, t = 50. when the interface is nearly flat ; - - -, t = 457, when 
a dimple has been formed. 
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0.18. The dimple has an approximately parabolic shape with curvature opposite to 
that of the undeformed sphere. Beyond the dimple, the thickness quickly returns to 
the asymptotic form given by (30). 

I n  figure 5 the pressure distribution inside the film is shown for three characteristic 
times. The pressure becomes progressively larger and more concentrated with time, 
thus causing the interface to  flatten. Moreover, the pressure gradient increases with 
time near the edge of the flattened region, and this induces a relatively faster local 
thinning rate and the formation of a dimple, until eventually this effect is balanced 
by the increased local resistance to the outflow. At long times, the pressure inside the 
dimple (relative to the ambient) is nearly uniform and drops fast beyond its edge. 
This confirms that the dimple has a parabolic shape to a first approximation. 
Moreover, it  suggests a simple way to calculate the radius of the rim. The pressure 
inside the dimple is nearly equal to the pressure in the drop, 2v/a, and balances the 
buoyancy force. This is true since, as can be seen from figure 4, the slope inside 
the dimple is smaller than O(O.0le) and hence the interface is nearly flat. Thus, 
(2a/a) ( n r 2 )  = #nApga3 from which the dimensional rim radius is 

TD * - - (zg)ia, (31) 

or rD = (id);. This gives the value 0.1825 for the dimensionless radius of the rim, 
which is in agreement with the numerical calculations. The result given in (31) was 
first obtained by Derjaguin & Kussakov (1939). 

The fact that  the thickness h(r, t )  obtains quasi-steady-state features at long times 
was used by Frankel & Mysels (1962) to predict the long-time thinning rates. A more 
complete analysis was done independently by Jones & Wilson (1978). They find that 
for long times the thickness a t  the drop axis of symmetry decays like t-f, while that 
at the edge of the rim like t-t. Before we compare the numerical results to these 
predictions we present a formal long-time asymptotic analysis where the small 
parameter is inverse time. We follow the lines of discussion of Jones & Wilson (1978) 
and extend their results by showing that the thickness can be completely specified 
without the need of any assumed initial shapes or adjustable parameters, in contrast 
to  the statements of Lin & Slattery (1982), and by finding the rate at which the rim 
radius approaches the final value (9)". 

2.4. Long-time asymptotics 
Substituting (9) into (11) we obtain 

We introduce the following resealing : 

r* -- r r = -  h = - = -  - 
6 Ba' - (z$)-ia ' 

- h h* 

where the asterisks denote the original dimensional variables. Then (32) takes the 
form 

which is independent of initial conditions. 
The spatial domain is divided into three regions: a dimple region I (0 < r" < l) ,  

where h" = O(t-a) and the characteristic radial lengthscale is 0(1), an outer region 
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I1 (P > 1) beyond the rim, where h = O( 1) and the lengthscale is again O( l) ,  and a rim 
region 111, around P = 1,  where k = O(t-i)  and the characteristic lengthscale i is 
O(t-a). We start with the first-order terms and with the asymptotic sequences 
unspecified. Then by construction it is found that the following expansions for 6 are 
valid in the three regions: 

&I = t - ip l ( f )  + t-4 In ~ J P )  + t - i p 3 ( ~ )  + t-f In2 t p4 ( f )  + t-f In tp5(p) + t-$pp6(7) + . . . , (34~) 
k,,, = t-$q,(i) + t-:q2(i) + . . . , 

h",, = s,(P)+t-is,(P)+t-fss,(P)+ ..., 

where the inner variable, i ,  is defined as 

" P - i + + ( t )  
r =  

t-+ ' 
with x ( t )  = O ( t 4 ) .  (35) 

Here, x( t )  reflects a small uncertainty in the exact position of the inner coordinate 
which does not affect the leading-order governing equation. Further details are given 
in the Appendix. 

From the asymptotic analysis (see the Appendix) we deduce that the thickness a t  
the drop axis of symmetry decays like i(0, t )  - 0.3273t-f+ 0.0486t-1 In t -  0.6284t-4 or 
in terms of the original dimensionless variables 

h(0, t )  - S[0.3273t-a+0.0486t-~lnt-0.6284t-~]. (36) 
Similarly the minimum thickness at the rim decays like 

h,,,(t) - cY(0.4897) t-i, 

r,, - ($&)f(l-0.16525-:). and occurs at 

(37) 

(38) 

In figure 6 (a-c), the numerical calculations for h(0, t ) ,  hmin(t), and rD are compared 
to the asymptotic results. As can be seen, the agreement is good, and this confirms 
the asymptotic analysis. In figure 6 ( a ) ,  the result for an undeformed sphere is also 
shown, which agrees with the numerical results for short times. 

From the asymptotic and numerical results presented, a unified picture emerges 
which describes the behaviour of the drop as i t  approaches a solid surface. When the 
drop is far away from the wall it descends with constant velocity given by the 
Hadamard-Rybczynski formula (Batchelor 1967) and retains a spherical shape 
independently of the magnitude of interfacial tension. As it approaches a t  a distance 
of O(a) from the wall i t  slows down as described by Wacholder & Weihs (1972), and 
the redistribution of viscous forces causes a deformation of O(Ba), which is negligible 
provided that B << 1. When the drop is at a distance h, < a, a lubrication regime is 
established in the thin gap between the drop and the solid surface, and the drop 
descends a t  an exponentially decreasing rate, provided that S = Ba/h, % 1, which 
implies that the deformation is still negligible. At this point the deformation relative 
to the instantaneous gap increases, becoming progressively more pronounced and 
concentrating in a small region of O(&) around the drop axis of symmetry. When the 
gap thickness is approximately 0.16Ba the interface becomes nearly flat and the 
higher pressure gradient near the edge of the flattened region induces a faster 
thinning rate there which results in the formation of a dimple. As time progresses the 
pressure inside the dimple becomes nearly uniform, the shape of the gap is nearly 
parabolic, the rim radius tends toward the value ($.B)ia, and the evolution features 
obtain a quasi-steady form. At time infinity the drop becomes flat at its base and the 
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FIGURE 6. Evolution features of the thin gap. (a)  The thickness at the axis of symmetry: -, 
numerical result; - - -, short-time asymptotic result for undeformed drop ; --- , long-time 
asymptotic result for dimpled drop. (b )  The minimum thickness at the rim : -, numerical result; 
---, long-time asymptotic result, (c) The position of the rim relative to the final value, (@);: -, 
numerical result; - - -, long-time asymptotic result. 
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contact angle is zero as can be verified from (A 8).  This is so because forces of 
molecular origin are not incorporated into the analysis and the curvature must be 
finite everywhere. 

2.5. Effects of the viscosity ratio 
I n  the analysis presented above we assumed that the drop is much more viscous than 
the suspending phase so that the tangential mobility of the interface is very small. 
For this to be true initially, the constraint h % 1/e must be valid. On the other hand, 
if h < l/s, the interface in the vicinity of the thin gap is almost fully mobile or stress 
free, and the radial squeeze flow in the gap drives a flow inside the drop with a 
velocity scale that is of the same order of magnitude as that  in the thin film. 
However, i t  is easy to verify that equations (9) and (10) remain the same. The 
analysis for the deformation in the outer region also remains unchanged. In  fact, 
viscous forces are now O(Apgaihi) but are still of smaller order of magnitude than 
gravity and capillary forces. The only difference is that ( I  1 )  must now be replaced by 

Therefore, when h < i/s the same behaviour will manifest itself as the drop 
approaches the solid surface, but it will simply occur at a pace four times faster. I n  
the intermediate case of h = O(l / s ) ,  the interface is partially mobile and the film 
drainage and drop flow are fully coupled. The behaviour of the thickness versus time 
will then be intermediate between the two extremes of tangentially immobile and 
fully mobile interface. The same conclusions were also reached by Barnocky & Davis 
(1989), who extended the work of Davis et al. (1989) to include the near-contact 
interaction of spherical drops with rigid and free boundaries and with drops having 
different properties. 

Returning to our original case of a highly viscous drop with initially small 
tangential mobility of its interface, the initial constraint h $= l /e = (a/h,(O))i must 
be replaced by the more severe one h $= (a/h,(t))i as time progresses and the gap 
thickness decreases. This implies that h $= B-i is required if the drop interface is to 
be tangentially immobile when the deformation first becomes significant. Finally, 
when the dimple has formed the proper constraint becomes A $= [Bk,,,(t)]-4 = 
O(B-@). Therefore, a t  some point in time the assumption of small tangential mobility 
of the interface will break down and a transition will occur towards the regime of a 
fu lb  mobile interface, since eventually h will no longer be large compared to 
[Bh,,,(t)]-'. We finally note here that if surfactants are present, the interface will be 
tangentially immobile independently of the viscosity ratio. 

3. Drop approaching a deformable interface 
We now consider the case of a drop of fluid I ,  suspended in fluid 11, and descending 

owing to  buoyancy towards an initially flat interface separating phases I1 and 111. 
In the analysis to follow, phases I and I11 will be taken to be identical. A definition 
sketch is given in figure 7. Again it is assumed that interfacial tension is sufficiently 
strong to prevent any significant deformation until the minimum separation between 
the drop and the deformable interface is small enough that a lubrication regime is 
established in the thin gap. This implies again that e = h,/a < 1 and 6 = Bu/h, 4 1.  
Now account has to be taken of the deformation of both the drop and the interface. 
We first consider the case h $= 1/s which means that phase I (as well as phase 111) is 
much more viscous than phase 11. 
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AP 

FIGURE 7. Definition sketch for a drop descending towards a deformable interface. 

3.1. The case of small interfacial mobility ( A  B 1 / ~ )  
As before, we adopt a cylindrical coordinate system located at  the intersection of the 
drop axis of symmetry and the undeformed flat interface. The position of the two 
interfaces near the thin gap is described by hl(r ,  t )  and h,(r, t )  respectively, while the 
gap h(r,  t )  is given by h = h, - h,. The same order of magnitude analysis for velocities 
stresses and pressures applies here as in $2.1. Therefore, in the limit E < 1 and S + 
1, the governing equations for the thin gap are the same as in (7)  while the boundary 
conditions become 

uI1 = 0 at z = hl(r,  t )  

and the kinematic boundary conditions at  the 

Finally, an integral force balance on the drop gives 

Solving for u I I  and wII and utilizing the kinematic boundary conditions (42), we 
obtain the following equation for the gap, h = h, - h, : 

- ah = 1 a 
--(rh3F). ap11 

at 12rar 

Subtracting (41 b )  from (41a) we have 

(44) 

(45) 

Thus, it is seen that the system of equations (43)-(45) is almost identical to the 
system (9)-( 11) for the case of a drop approaching a solid surface. The only difference 
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is that 6 is now replaced by 26. Consequently, the analysis presented in the previous 
section carries over to this case, and the numerical results shown in figures 2-6 apply 
here as well, provided that 6 = 0.025 rather than 6 = 0.05. For long times, a dimple 
will again be formed whose radial extent will be r D  = [;(26)]~ or in dimensional form 

(46) 
r * -  D - ($)'a. 4 

Note that the result given by Jones & Wilson (1978) appears to be in error since the 
numerical coefficient given is & instead of i. 

The only issue that remains to be addressed is how to obtain the deformation of 
the drop and the interface separately, that is how to obtain h, and h,. Using (41a) 
and (43) we can easily show that the deformed drop surface is described by 

h, - $r2-$61nr+0(1) as r + m .  (47 1 
The analysis for the deformation of the drop far away from the gap presented in 52.2 
applies here as well an confirms the asymptotic form (47). Now, using (43) and either 
(41b) or (45), we find that the interface deformation is given by 

h, - $Slnr+0(1) as r +  co. (48) 
Thus, h, like h, diverges logarithmically for large r ,  and an outer solution which 
eventually decays to zero must be provided in order to obtain a uniformly valid 
approximation for h,. The three forces, the balance of which determines the 
deformation, are gravity, capillary and viscous forces. In the inner region of radial 
lengthscale (ah,);, gravity is unimportant, and pressure forces cause a deformation of 
O(Ba). Now, if the outer lengthscale is O(a), capillary forces are O(aBa), gravity 
forces are O(ApgBa), and viscous and pressure forces are O(Apgh,). It is easy to verify 
that capillary forces then dominate over the other two and a homogeneous equation 
of the form ( l /r)  (a/ar)  (rah,/ar) = 0 is obtained. The solution of this equation does 
not have the appropriate behaviour as T +  co. Therefore a third lengthscale must 
exist such that capillary and gravity forces are in balance. This is the capillary 
length, (cr/Apg)a, which is much larger than the drop radius a since B 4 1. Now, if we 
assume that the velocity field away from the drop decays a t  least as fast as l/r, then 
viscous and pressure forces are O(BApgh,) and hence much smaller than capillary and 
gravity forces. Thus,if we define r(o) = r * / ( g / A p g ) ; ,  the appropriate form of the 
normal stress boundary condition in the outer region becomes 

Here, hp) is the deformation of the initially flat interface in the outer region, and is 
scaled in the same way as the inner gap thickness, h. The solution of (49) which decays 
to zero as r(o) + 00 is 

and in fact does so exponentially. Here, KO is the modified Bessel function of zero 
order and the second kind and has the desired logarithmic singularity as r(,) + 0, 

(51 ) 

= c&(r(o)), (50) 

hg) N c( -In r(,) +In 2 - y ) ,  

where y = 0.57721 is the Euler constant. Rewriting (51) In terms of the inner 
variable and matching with the inner solution we obtain c = -$6 and 

h, N Q S ( l n r + ~ l n B ~ ~ - l n 2 + ~ )  as r+co. (52) 
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FIGURE 8. The shape of the drop (-) and the interface (---) near the axis of symmetry for 
h % 1 and short times. 

Now, from (41a, b ) ,  i t  is easy to show that the deformations of the drop and the 
interface are of similar form : 

(53a) h , - p  = -d l i j l : I "Lrd~dS+~ , ( t )  = -f(r,t)+Cl(t), 

h, = 6 - P1%d7d(+cZ(t) =f(r,t)+c,(t), It1 (536) 

from whichf(0,t) = 0 and h(r,t) = h,-h, = $ r 2 - 2 j ( r , t ) + c l + c z .  Thus 

h(0, t)  = cl-cz. (54) 

On the other hand, h(r, t )  - ~r2-$31nr+c,(t) for r b 1, where c3(t) can be found from 
the numerical calculations at every instant in time. Hence, f - 26/3 In r-+c3 + &(O, t) 
as r+m,  and from (53b), h, -~ lnr -&c,+~h(O, t )+c , .  Thus, using the asymptotic 
expression (52) we obtain 

(55) 

which can be solved together with (54) to  give c1 and c, and thus specify h, and h, 
completely. 

In  figures 8 and 9 we show the behaviour of the two interfaces for various 
characteristic times, with 8 chosen to be 0.1. As expected, the deformation of the 
initially flat interface is more pronounced than that of the drop. Note that the 
negative values of hl(r ,  t) indicate that the drop has penetrated the plane representing 
the initial location of the undeformed interface. 

We finally note that if the dimensional interfacial positions, h: and h,*, are scaled 
with Ba, rather than the somewhat arbitrary initial thickness h,, and r* with 
($B)ia, the asymptotic expression for h; for large r takes the form 

c, + i(h(0, t) - c3) = $a($ In Be2 - In 2 + y ), 

h,* - ~$u(lnr+lnB-t ln3-y) .  (56) 

Now, since at time infinity h* = 0 for r d 1 and h* = 9,-$lnr--$ for r 2 1, the 
functions of time cl(t) and c,(t)  in (53) take the final value g(lnB)-$(ln3)-$+$y. 
Hence, in dimensional form 

h,*(O,t) - Ba($lnB-+ln3-1-2 3 3YL (57) 
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FIGURE 9. Shape of the gap for h %= 1 and two characteristic times : t = 30 when the deformation is 
small, and t = 457 when a dimple has formed: (a) -, shape of the drop; ( b )  ---, shape of the 
interface. 

which is the maximum depression of the initially flat interface a t  time infinity. Note 
that the result given by Jones & Wilson (1978) appears to be in error since they give 
a maximum depression of O(a) (see their equation (A 4)). 

3.2.  The m e  of fully mobile interfaces (e 6 h 4 l/e) 
We finally consider the case when the drop (as well as phase 111) and the continuous 
phase 11 have viscosities of the same order of magnitude. The same constraints as 
before, namely B = (h,/a)i  4 1 and S = Ba/h, 4 1 are imposed. Again, S < 1 is 
equivalent to the constraint hCu(a/h,)i 4 1 imposed by Davis et al. (1989). The 
pressure in the gap is O(Apga2/h,) which induces a parabolic velocity field UP* in the 
gap of O(Apgu~hjJp) with associated stresses exerted on the interfaces of O(Apgui/hb). 
Then, the balance of tangential stresses at the interfaces suggests that the velocities 
inside the drop and phase I11 are 0(Apga2 /hp) .  Continuity of velocities at the 
interface implies that a uniform radially outward flow exists in the gap with u*I1 = 
O(Apga2/hp), which is much larger than up*. Then from the continuity equation we 
obtain that the normal velocity in the gap, w*I1, is (O(Apgaihi/hp).  Finally, the 
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timescale is O(A,uh~/AL\pgd). Using these scalings, the dimensionless governing 
equations inside the gap take the form 

while the full Stokes equations hold inside the drop and in phase 111. At the two 
interfaces, x = h,(r, t )  and z = hz(r, t ) ,  the velocities are continuous : 

UII = d, wI = O(e)  a t  z = h,, 

uII - - u I I I ,  wlI1 = O ( E )  a t  z = h,. 

The shear stress conditions a t  the two interfaces simplify to 

and the normal stress conditions give 

Finally, the kinematic boundary conditions a t  the two interfaces are 

a t  z = h,, (62 a )  

We observe that the problem for flow in the gap is now coupled with that inside 
the drop and in phase 111, and a simultaneous solution is required in order to  obtain 
the evolution of the thin gap in time. From (58a)  and the tangential stress conditions 
(60) it is easy to verify that ulI is independent of z. Then, using the continuity 
equation we can solve for wI1 in terms of UII. Utilizing the two kinematic conditions 
we obtain the following evolution equation for the thin gap: 

ah l a  
-+--(ru%) = 0. 
at ra r  

Here, h = h,-h, as before. The fact that the positions of the two interfaces are 
unknown complicates the application of the interfacial conditions of continuity of 
velocities. However, as discussed in Davis et al. (1989), since the velocity fields in the 
drop and phase 111 are slowly varying in the z-direction, it is permissible to  assume 
that the interfaces are nearly flat. Then an expression for interfacial velocity in terms 
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of interfacial stress or vice versa can be obtained using boundary-integral theory, and 
we have (Davis et al. 1989, with an error of a factor of 2 corrected) 

where 

u*I 1 duI' d2u11)dr,, 
rt2 r' dr' drJ2 

#(r' ,  r )  

#(r ,  r') = - 

is an elliptic-type Green's function kernel, and k2 = 2rr'/(r2+r'*). 

gap and is related to the pressure by 
The shear stressf, corresponds to the O(hs)  correction to the uniform flow in the 

as can be verified from (58) and (60). Finally, subtracting the two normal stress 
conditions we obtain a relation between the pressure and the thickness of the gap: 

and the problem is closed by writing the integral force balance as before: 

1; PIIr dr  = $. (67) 

We note again that h - &r2-@ln r as r+ 00,  as can be verified from (66) and (67). 
The system of equations (63)-(66) subject to  the condition (67) can be solved 

numerically for the four unknowns (thickness, velocity, interfacial stress and 
pressure) by a similar approach as before. Given the instantaneous thickness and an 
initial estimate for its rate of change, uI1 is calculated from (63). Then ft is obtained 
from (64) and PI1 from (65). The magnitude of the rate of change is adjusted so that 
(67) is satisfied. Then the calculated pressure is used in (66) to find a new iterate for 
h at the next time step, and the process is repeated until convergence is obtained. The 
integrations are performed using Gaussian quadratures. We note that the Green's 
function kernel # ( r ,  r ' )  has an integrable (logarithmic) singularity a t  r = r'. As is the 
usual procedure with boundary-integral calculations, the singular part is subtracted 
and calculated analytically. 

To obtain the positions of the two interfaces, h, and h,, the same approach as in 
the previous section is used. For this case, viscous forces a t  distances of O(a) from the 
thin gap are O(Apgaihi), but this does not affect the analysis and the conclusions 
drawn there. 

In figures 10 and 11 the shape of the two interfaces is shown for various 
characteristic times for 6 = 0.025 and e = 0 . 1 .  Again, it can be seen that the 
deformation of the initially flat interface is more pronounced than that of the drop. 
Eventually, as can be seen from figure 11,  a dimple is formed which has a radius of 
($&)i, or (@);a in dimensional form, which does not involve the initial conditions. 
Note, however, that the onset of the formation of the dimple is here delayed 
compared to the case of nearly rigid interfaces (cf. figure 3) and appears when the 
thickness at the axis of symmetry has decreased by three orders of magnitude. This 
explains why Chi & Leal (1989) were unable to detect the formation of the dimple for 
h = O( 1) using the full boundary-integral method. 
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.5  

FIGURE 10. The shape of the drop (-) and the interface (---) near the axis of symmetry for 
A = 0(1) and short times. 

4 
r 

FIGURE 11. Shape of the drop (-) and the interface (---) for h = O(1) and two 
characteristic times: t = 10 and t = 50. 

In  figure 12 the behaviour of the thickness h(0, t )  a t  the axis of symmetry is shown 
as function of time. Also shown is the prediction of Davis et al. (1989) for undeformed 
drops. As they show, undeformed drops with h = 0(1) coalesce in a finite time since 
the lubrication force is inversely proportional to the square root of the instantaneous 
minimum gap thickness. From their equation (16) we find 

h,(t) = (l-0.1269t)2, (68) 

and thus coalescence occurs a t  t = 7.88. In  contrast, when deformation is taken into 
account, the mode of approach is not only quantitatively but also qualitatively 
different since now it takes an infinite time for coalescence to occur (unless an 
attractive force of molecular origin is also present which increases in magnitude as 
the gap decreases). 

A long-time evolution pattern becomes established eventually, as can be seen for 
figure 12. Given that now the timescale is much shorter than in the case of nearly 
rigid interfaces, the film drainage occurs much more quickly, which is not surprising 
since the two interfaces now offer little resistance to radial outflow. The key steps to 
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FIQURE 12. Evolution features of the thin gap. (a) The thickness at the axis of symmetry, h(0, t ) ,  
as function of time: -, numerical r e y l t ;  ---, result for undeformed drop (Davis et al. 1989); 
_ _ _  , asymptotic form proportional to t-3 for long-times. ( b )  The mini2um thickness as function of 
time: -, numerical result; - - - ,  asymptotic form proportional to t- for long times. 

a long-time asymptotic analysis are similar to those discussed in $2.4, and this 
problem has also been considered by Jones & Wilson (1978). However, the inner 
region near the edge of the dimple is described by a nonlinear integro-differential 
equation and, as they state, there is no prospect of finding an analytical or numerical 
solution. Thus, quantitative comparisons with the numerical results cannot be made. 
But their analysis indicates that now the thickness at the axis of symmetry decays 
like t-f and the minimum thickness like t-;. As can be seen from figure 12, our 
numerical results agree with this prediction and therefore the numerical analysis is 
complete and can provide an estimate for the long-time thinning rate. A visual best 
fit for the long-time thinning rate is shown along with the numerical results, from 
which we estimate 

h(0, t )  - 0.126t-i, (69) 

h,, - 0.086tf, (70) 

We finally note that comments similar to those in $2.5 regarding the effect of the 
viscosity ratio apply here. More specifically, the initial constraint h $- 1 / ~ ,  for the 
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increases to be tangentially immobile, must be replaced by h 9 B-; when the 
deformation becomes significant, and by h b (BLmin)-$ when a dimple has been 
formed. Thus for fixed h B 1, a transition will occur a t  some point in time from the 
regime of nearly tangentially immobile to fully mobile interfaces. Similarly, when 
A = O( l / e ) ,  a transition will occur from the initial regime of partially mobile increases, 
in which the flows in the three phases are fully coupled, to the regime of fully mobile 
interfaces. When A < O(s) the lubrication approximation does not apply initially, 
and the analysis presented here is not valid (Davis et al. 1989). However, at some 
point in time when the gap thickness has decreased sufficiently, the lubrication 
approximation will become valid, and eventually the film will behave as described in 
$3.2. 

4. Concluding remarks 
The rate of approach and the time evolution of the shape of viscous drops driven 

by buoyancy towards a flat rigid surface or a deformable interface have been 
analysed under the constraint of small Bond number, B = (Apga2/a).  This constraint 
ensures that capillary forces prevent any significant deformation until the minimum 
separation distance is much smaller than the drop radius and a lubrication regime is 
established in the thin gap. For a typical two-phase system where water is one of the 
components, the constraints of small Bond and Reynolds number, which must be 
imposed for the analysis to  be valid, yield roughly the same upper limit of 
approximately 10 pm for the diameter of the drop. Non-hydrodynamic forces (i.e. of 
intermolecular or electrostatic origin) have not been incorporated into the analysis. 
However, these forces become important for films with thickness of O( 10 nm), which 
could be two or three orders of magnitude smaller than those for which the present 
analysis holds. Therefore, although the results presented will not be valid for 
arbitarily long times, they are expected to give a quantitative prediction of the major 
part of the film thinning history prior to rupture and drop coalescence. 

The analysis is free from any ad hoe assumptions and is able to predict naturally 
the evolution of the shape of the drop and the deformable interface near the thin gap, 
as well as away from it. Account is taken of the flow in all fluid phases involved. It 
is shown that the absolute deformation is of the same order of magnitude everywhere 
around the drop, whereas the relative deformation is most important in the near- 
contact region. The numerical calculations trace the evolution from a relatively 
undeformed state where the results of Davis et al. (1989) hold, until a dimple is 
formed and a long-time quasi-steady-state pattern is established. It is shown that for 
sufficiently long times a dimple is always formed, independently of the ratio of 
viscosities of the drop and the suspending phase. The dimple radius is and 
($);a when the drop approaches a solid surface and a deformable interface, 
respectively, and in the second case the maximum depression of the interface is 
O(B In B )  . 

This work was supported by NSF grants CBT-8451014 and CTS-8914236, and by 
NASA grant NAGW-951. 
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Appendix. Long-time asymptotics for a drop approaching a wall 
We first solve for hI. At O(t-i), substituting (34a) into (33) we obtain 

from which p ,  = b,( l - r " ) ,  (A 2) 

since must, be regular a t  r" = 0 and is O(t-i) as r"+ 1 .  The constant b, will be 
determined from matching with the rim solution. At O(t-iIn t)  we obtain an equation 
for p ,  which is identical to (A 1) and thus 

p ,  = b2+b3(l-r"L). (A 3) 

At O(t-4) transient effects appear in the outer region I and we have 

which can be solved for p3 to give 

(A 5 )  
1 

4%: 
d7 -- In (1 - p )  + b, + b5( 1 - P ) .  

At O(t-ilnt) again an equation which is identical to (A 1 )  is obtained for p,. Thus 

p ,  = &+b7(1-r"L). (A 6) 

Proceeding in the same fashion we can solve for p, ,p ,  in a straightforward manner, 
although since the algebra becomes tedious, details are omitted. 

We now turn to the outer region 11, and a t  O(1) we obtain 

-[--(r"$)] d I d  ds = 0. 
dr" Fd? 

The solution to  the above equation must match with the outer solution far away 
from the gap, obtained in $2.2, and also tend to zero as r"+ 1. Therefore 

s1 = ~ ~ - $ l n ~ - + .  (A 8) 

At O(t-;) an equation identical to (A 7) is obtained for s2, and thus s2 must have a 
form similar to (A 8). But since h",, - !jr"L-glogr" as r"+ co for all times, as dictated 
from the outer solution far away from the gap, the quadratic and logarithmic parts 
are not allowed and s2 must be a constant. The same is true for s3. 

We finally turn to the rim region in order to determine hIII. At O(t&) we obtain 

We rescale q1 and i: by defining 

q1 = d2q1,, i? = d3F. 

Then (A 9) takes the form 
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where, for convenience, we have set 

d, d,3/d,4 = 1. 

Equation (A 11) has been solved numerically by Jones & Wilson (1978) with the 
boundary condition ql - - F as F+ - co . More precisely they found that 

(A 13) 
~ q, - -y-- In ( - F) - a In ( - q / F +  O( 1 I F )  as F +  - 00, 

and also that ql - $(1.2147?) as F+ 00, while a minimum of 1.2571 occurs near F = 
0. We repeated the calculation to find more precisely that 

ql - +( 1.2908?) - 0.052F+ O( 1 )  as F+ 00, (A 14) 

and that a minimum of 1.2592 occurs a t  F =  -0.236. 
At O(t-f) we obtain 

q1-+3d,% 3 d3q2 = d4-idl-q;- d2q1 
di3 Q1 di2 ’ 

which, after rescaling q1 and 4 as in (A 10) and setting q2 = d ,  d ,  q2, can be written as 

The solution to the above equation is obtained as a superposition of qZl = d ,  q,, which 
is a multiple of q, and cancels the constant forcing term d4d! /d l ,  and a part qZ2 that 
satisfies the remaining equation. This was found numerically using the asymptotic 
expansion 

qz2 N - 1p , - 2 ~ l n ( - q + O ( l )  as ~ + - m  

as the initial condition, and integrating from large negative values of F. In  this way, 
we find that qZ2 - -0.2016?+ 1 .09?+0(~)  as F+ co. (A 18) 

We are now in the position to apply matching in order to obtain the unknown 
constants. Since T1 behaves as shown in ( A  14) for F+ 00, x ( t )  must be of the form 
x ( t )  = x,t-a+O(t-T). Rewriting the outer solution I1 In terms of the inner variable 4 
and expanding for large t we obtain 

h“,, - [ fP - i X 1  i+ O( l)] t-t+ [ -+?3 +fx, i2 + 0(4)] t-f. 

The expression for the inner solution as i+ co takes the form 

) i2 + 0(3] t-f. (A 20) 
+(l.y2 1.2098d,d5 

2d,2 
+ 

From (A 19) and (A 20) we obtain 

0.2016d2 2 - .  - -  
1.2098d2 2 0.052d2 4x,. -- - - .  -~ - 

9’ ( A  2 1 a d )  2d3” 3’ d ,  3 ’  d3” 

1 .09d2 1 .2098d2 d ,  2x, 
- 

3 .  
+ 

d3 d3” 
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Similarly, rewriting the outer solution I in terms of the inner variable 4 we obtain 

1 1 + [b, + O( l)] t-i ln2 t + - 2b, ?+-i+ O( 1) t-f ln t [ 4%; 

12b1 
1 + - b, i2 --r"1n ( - r " )  + - 2b, + 2b, x1 +- [ 12b; 

(A 22) 
The expression for the inner solution as ++ - co takes the form 

LIII N [ - - - ~ + - ~ d , l n ( - r ' ) + + d , l n ( d , ) - ~ d , d , -  In (-+) 
r" 

From (A 22) and (A 23) we obtain a set of algebraic equations, which can be used 
together with (A 12) and (A 21) to find the coefficients of interest. Some of these 
equations are redundant, and serve as consistency tests which verify the correctness 
of the assumed expansions. We have 

Solving (A 12), (A 2 l ) ,  and (A 24) we obtain 

b, = 0.3273 ; b, = -0.0486; b, = 0.0972 ; b, = 0.6239 ; b, = 0.0045, 

d, = 0.1091 ; d, = 0.3888 ; d, = 0.5940 ; d4 = -0.2660 ; d, = - 1.0260, 

x1 = 0.0256. 

From the above, we can find that the thickness at the axis of symmetry is 

L(0, t )  - b, t-f+ (b,+ 6,) t-flnt+ (b,+ 6,) t t + .  .., 

gmin(t) - 1 .2592d, t-i + . . . , 

r" - 1 - (0.236d3 + x,) t-: + . . . . 

(A 25) 

(A 26) 

(A 27) 

that the minimum thickness is 

and that the radius of the dimple is 
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